Bacterial flagellar capping proteins adopt diverse oligomeric states

نویسندگان

  • Sandra Postel
  • Daniel Deredge
  • Daniel A Bonsor
  • Xiong Yu
  • Kay Diederichs
  • Saskia Helmsing
  • Aviv Vromen
  • Assaf Friedler
  • Michael Hust
  • Edward H Egelman
  • Dorothy Beckett
  • Patrick L Wintrode
  • Eric J Sundberg
چکیده

Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not formed, resulting in impaired motility and infectivity. Here, we report the 2.2 Å resolution X-ray crystal structure of FliD from Pseudomonas aeruginosa, the first high-resolution structure of any FliD protein from any bacterium. Using this evidence in combination with a multitude of biophysical and functional analyses, we find that Pseudomonas FliD exhibits unexpected structural similarity to other flagellar proteins at the domain level, adopts a unique hexameric oligomeric state, and depends on flexible determinants for oligomerization. Considering that the flagellin filaments on which FliD oligomers are affixed vary in protofilament number between bacteria, our results suggest that FliD oligomer stoichiometries vary across bacteria to complement their filament assemblies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold.

Although it is known that diverse bacterial flagellar motors produce different torques, the mechanism underlying torque variation is unknown. To understand this difference better, we combined genetic analyses with electron cryo-tomography subtomogram averaging to determine in situ structures of flagellar motors that produce different torques, from Campylobacter and Vibrio species. For the first...

متن کامل

Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain.

The bacterial flagellar apparatus, which involves ∼40 different proteins, has been a model system for understanding motility and chemotaxis. The bacterial flagellar filament, largely composed of a single protein, flagellin, has been a model for understanding protein assembly. This system has no homology to the eukaryotic flagellum, in which the filament alone, composed of a microtubule-based ax...

متن کامل

Novel Components of the Flagellar System in Epsilonproteobacteria

UNLABELLED Motility is essential for the pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a cell wall-anchored motor using chemical energy. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant differences in the flagellar structures of di...

متن کامل

Stepwise formation of the bacterial flagellar system.

Elucidating the origins of complex biological structures has been one of the major challenges of evolutionary studies. The bacterial flagellum is a primary example of a complex apparatus whose origins and evolutionary history have proven difficult to reconstruct. The gene clusters encoding the components of the flagellum can include >50 genes, but these clusters vary greatly in their numbers an...

متن کامل

A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system.

Biogenesis of the flagellum, a motive organelle of many bacterial species, is best understood for members of the Enterobacteriaceae. The flagellum is a heterooligomeric structure that protrudes from the surface of the cell. Its assembly initially involves the synthesis of a dedicated protein export apparatus that subsequently transports other flagellar proteins by a type III mechanism from the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016